
Realistic Evaluation of Interconnection Network Performance at High Loads

F.J. Ridruejo1, J. Navaridas1, J. Miguel-Alonso1, Cruz Izu2
1 Dep. of Computer Architecture and Technology, UPV/EHU, Spain
2 School of Computer Science, The University of Adelaide, Australia

{franciscojavier.ridruejo, javier-navaridas, j.miguel}@ehu.es, cruz@cs.adelaide.edu.au

Abstract

Any simulation-based evaluation of an

interconnection network proposal requires a good
characterization of the workload. Synthetic traffic
patterns based on independent traffic sources are
commonly used to measure performance in terms of
average latency and peak throughput. As they do not
capture the level of self-throttling that occurs in most
parallel applications, they can produce inaccurate
throughput estimates at high loads. Thus, workloads
that resemble the varying levels of synchronization of
actual applications are needed to study the
performance of interconnection networks. One
approach is to use simple, burst-synchronized synthetic
workloads that emulate the self-throttling of many
parallel applications. To validate this approach, we
compare the gains achieved by a restrictive injection
mechanism under this workload with those obtained
using traces from the NAS Parallel Benchmarks. This
study confirms that the burst-synchronized traffic
model provides reasonable performance estimates,
which could be improved by taking into account
dependency chains between messages.

1. Introduction

The interconnection network (IN) is a key element
of any parallel computer, more so when executing
communication-intensive applications. Network
performance has been evaluated using many
techniques, including: network simulation with
synthetic loads, analytical models, trace-driven
simulation and full-system simulation. Traditionally,
network simulators measure performance under a well-
known range of synthetic traffic patterns such as
uniform, hot-spot and permutations. These patterns
model worst-case scenarios of little locality and
unbalanced usage of network resources [4]. Analytical
models have been proposed for simple networks but

they rely on unrealistic assumptions, such as uniform
traffic or infinite injection and delivery queues, so they
have limited use. A full system simulation, in which
traffic is provided by an execution-driven simulator
such as Simics [16], provides more meaningful results
but limits the evaluation to small networks.

Congestion is a well-known problem in standard
computer networks [8], but most INs in the literature
(most with a standard size of 256 nodes) did not
exhibit throughput degradation at loads beyond
saturation. Such network proposals had single injection
queues and, when the network is small, the head-of-
line blocking at injection is enough to throttle the
network and control congestion [7]. This is not the case
for large networks with multiple injection sources such
as IBM’s BlueGene/L [2], which are prone to suffer
from congestion at heavy loads. Consequently, new
congestion control techniques have been proposed and
evaluated for wormhole [1,15] and virtual cut-through
INs [9,11,14]. Most of these works carry out
evaluations using synthetic traffic patterns that assume
that nodes generate traffic independently of each other.
Although they ignore the different levels of coupling
and synchronization that exist in parallel applications,
synthetic loads seemed to provide reasonable
indicators of network performance for a range of
parallel benchmarks [12]. Note that most parallel
applications will apply some level of self-throttling as
nodes synchronize and may stop sending new
messages as they wait for messages delayed by
congestion. Thus, any evaluation of an IN at heavy
loads, and in particular any evaluation of a congestion
control technique, should be done under loads that
reflect the synchronization and coupling among
application processes.

In [6] burst-synchronized synthetic traffic was
proposed to make a fair evaluation of the congestion
control technique IPR (In-transit Priority Restriction),
the one used in the torus network of the IBM
BlueGene/L [2]. In this paper we will consider another
congestion control technique called Local Buffer

Restriction (LBR), which uses local information to
regulate the admission of new traffic. We will compare
results obtained using burst-synchronized loads with
those obtained by applying actual loads taken from
traces of the NAS Parallel Benchmarks (NPB). If the
synthetic loads reflect the synchronized nature of
parallel applications, both results should lead to the
same conclusions regarding LBR, and we would have a
means to evaluate very large systems. Note the main
goal of the work is not to evaluate LBR but to find out
if burst-synchronized loads are a good approximation
of real loads.

The rest of this paper is organized as follows.
Section 2 discusses related work. Section 3 describes
the experimental, simulation-based workbench. Section
4 compares and contrasts the results of the different
experiments. Finally, Section 5 summarizes the
findings of this work.

2. Motivation and Related Work

Most IN studies rely solely on synthetic traffic
patterns, which include uniform traffic, hot spot traffic
and permutations [4]. The figures of merit are latency
at low loads and peak network throughput. The need to
characterize network workload and produce better
synthetic models was identified long time ago [3],
although there has been little progress since. Instead of
developing new synthetic loads, some IN studies
combine the standard evaluation with real workload
evaluation [12]. Other studies use synthetic loads that
mimic the bursty nature of network traffic [14]
extending the standard packet generation, which
followed a Poisson or Bernoulli distribution, with a
sequence of ON/OFF states, so that packets are
generated only during the ON state. Besides, most
studies normalized the applied load to the network
bisection limit, so that the networks were not tested for
loads beyond their theoretical capacity. As most
network proposals sustained their maximum
throughput after saturation, the evaluation of the
network at heavy loads was not considered of interest
until recently. However, congestion is a problem for
large INs with multiple injection sources, and
congestion control mechanisms are tested at loads
beyond saturation [1,9,14] in order to see if they
prevent traffic bursts from degrading network
performance.

Synthetic loads used to evaluate congestion control
techniques fail into two categories: static loads, which
use the same pattern and injection rate over the time
each experiment runs, and dynamic loads which
alternate between phases of high and low injection
rates. For static loads, only the steady-state

performance is studied, and the figure of merit is
average sustained throughput. For dynamic loads the
figure of merit is total execution time, which is a better
indication of the network ability to cope with
communication intensive phases.

The evaluation of congestion control techniques
using static loads has shown that unbalanced traffic
loads may result in network unfairness at saturation
[6]: some nodes have less chance to inject traffic than
others. The source of this unfairness is the unbalanced
utilization of resources, derived from the traffic
pattern. The more in-transit packets a router has to
manage, the less opportunity it has to inject its own
traffic. Besides, an unbalanced load distribution results
in the formation of persistent zones of congestion at
high loads. In this context, average throughput as
reported in [1,8,15] is not representative of application
loads, because “fast” injecting nodes will eventually
wait for the slow ones to catch up. Therefore, in order
to obtain useful performance figures at heavy loads, a
static synthetic traffic pattern should reproduce the
level of coupling that exists amongst traffic sources in
actual parallel applications.

Non-static loads reflect the fact that communication
in many parallel applications is not constant over time,
so that an intensive communication phase (with high
traffic volume) will be followed by a computation
intensive phase (with low traffic volume), Recent
studies using non-static traffic patterns include [1,14]
in which traffic is uniform but load alternates between
low and high phases, and [15] in which each high
phase uses a different pattern. As mentioned before,
the figure of merit is total execution time. As the high
phases will exhibit network unfairness, a computing
node located in a less clogged area will be able to
advance to the next phase ahead of the rest, an unlikely
scenario in a parallel application. In other words,
although non-static synthetic loads reflect the temporal
variations that occur in application loads, they still fail
to model the synchronization and coupling amongst
application nodes.

Burst-synchronized traffic deals with this issue by
modeling the barrier synchronization primitives used in
many parallel applications, either explicitly (in the
form of collective operations) or implicitly. This
synchronized traffic has been sparingly used in studies
focused on injection issues [3,6], claiming that it
represents realistic workloads, but there is no formal
study confirming or denying this fact. Our work tries to
fill this gap by comparing the insights obtained from
synthetic loads with those from actual workloads taken
from application traces.

3. Experimental Setup

3.1 The Simulation Environment

Experiments have been performed using the
evaluation environment described in [13]. It consists of
an IN simulator and a traffic-generation module, which
provides traffic from one of these sources: synthetic
generation, traffic as recorded in traces or interfacing
with Simics [16] to perform a full system simulation
[11].

We perform most of our experiments using a small
network of only 64 nodes. This is because the trace-
capture setup imposes us limits that are close to this
value (due to availability of resources in a production
machine, and to the sizes of the trace files). As
bisection bandwidth does not increase linearly with the
radix, networks with large radix reach saturation at
lower injection rates, and they are more likely to suffer
overloads during intensive communication phases.
Thus we focus our study on 64-node rings, instead of
using 8x8 tori. The ring is adequate to experiment with
congestion, and results with this topology can be
extended to multidimensional Ins, because congestion
causes messages to rely on the escape sub-network, in
which they must traverse the x-ring first.

The models of routers used in the experiments are
depicted in Fig. 1. Each physical channel in the router
is split into three virtual channels (VCs): an Escape
channel (governed by the bubble routing rules [12]),
and two adaptive channels. Note that a ring network
has just one minimal path from source to destination,
so packets cannot adapt. Thus, the only difference
between the Escape VC and the other two is that access
to the “adaptive” VCs is not restricted by the bubble
rules. In the case of 2D tori, packets in adaptive VCs
can use any minimal path to reach their destinations.

Each node is able to simultaneously consume
several packets arriving to the reception port. There are
two injection ports, and the interface should perform a
pre-routing decision: packets moving towards the X+
axis are stored in the I+ injection port, and those
towards X– go to the I– injection port. Transit and
injection queues are able to store 4 packets of 16 phits
each. Phit length is 4 bytes (32 bits).

Each experiment has been repeated 10 times, using
different random seeds. We measure execution times in
terms of simulation “cycles”. As these times vary
between patterns or benchmarks we have represented
the average value (obtained from 10 simulation runs)
normalized to the Base case.

Regarding synthetic traffic we use UN (uniform)
and HR (hot-region). In both cases destinations are
chosen randomly; in the case of HR [2], 1/4 of the

traffic goes to the first 1/8 nodes, and the remaining
traffic is uniform.

Xbar

X-

X+

X-

I+

R

I-

(a)

Xbar

X-

Y- Y+

X+

X-

Y- Y+

R

I+

I-

(b)

Fig. 1. Models of the simulated routers, (a)
router for rings, and (b) router for 2D tori, with
a detailed view of the X+ input port showing
the 3 virtual channels that share its link

Traces used in this work have been obtained from
clusters of commodity PCs and from the Mare
Nostrum, running some of the NAS Parallel
Benchmarks (NPB) [10]. To obtain these traces we
modified the trace capture tool included in MPICH, in
order to register all the point-to-point operations—
including those that implement the collective
operations [13]. As we want the network to become the
bottleneck, we provided workload to the simulator as
fast as we can, regardless of the timestamps found in
the traces. However, in order to preserve the causal
relationship among messages, we maintained the order
shown between arrivals and new injections: when the
trace file indicated that a message was received at a
given node, injection of packets from that node sent
later in the trace is delayed until that message arrives.
This way, we measure the number of network cycles
that, in the simulated network, are necessary to
complete all the interchanges of messages stored in the
trace files.

3.2 Congestion Control Techniques

As congestion is caused by overloading the network
with too many packets, congestion control techniques
deal with it by limiting packet injection as soon as the
network exhibits signs of being congested. They differ
in the way congestion is diagnosed.

Global methods estimate congestion by examining
the status of the whole network (for example, the
number of packets held in the routers, as in [15]); thus
a mechanism is needed to gather and distribute that
information. Local methods are simpler because each
node restricts its own injection based on its own
congestion level. Multiple congestion control methods
are evaluated in [8]. As this is not a work on
congestion control, we consider only one simple local
method that has shown good performance, LBR.

Most routers split each physical link into several
VCs in such a way that the combination of an escape
sub-network with one or more adaptive sub-networks
provides deadlock-free adaptive routing [5]. The LBR
mechanism has been designed specifically for adaptive
routers that rely on Bubble Flow Control to avoid
deadlock in the escape sub-network [12]. A previous
study showed how the bubble restriction also provides
congestion control for the escape sub-network [7].
LBR extends this mechanism to the rest of the VCs.
That is, a packet can only be injected into an adaptive
VC if such action leaves room for at least B packets in
the transit buffer associated to that VC. Parameter B
indicates the buffer space reserved for in-transit traffic.
In other words, congestion is estimated by the current
buffer occupancy. We can vary the degree of
restriction in the injection by modifying this parameter.
In this work we use B=3 (out of 4-packet buffer), so
packets are injected in an adaptive channel only when
its queue is empty or almost empty.

4 Analysis of the Experiments

4.1 Experiments using Burst-Synchronized

Traffic

The utilization of burst-synchronized traffic to

model application loads was proposed in [6]. With this
traffic, each node tries to inject a burst of b packets as
fast as the network is able to accept them; then the
node stops. Nodes will start injecting another burst
only when all the packets of the previous one have
been consumed. The figure of merit in these
experiments is the time to consume a burst. We have
considered a collection of values for b, trying to
emulate different degrees of coupling among
application processes, from 10 (the most tightly-

coupled) to 10.000 (the most loosely-coupled). For
applications that synchronize using barriers, we can
interpret b to be the number of packets sent between
two barriers. Note that, in a VCT network, long
messages are packetized, so a long message generates a
burst of packets to be injected in the network.
Therefore, message size and b are directly related.

Execution times have been normalized to the time
of the Base case (LBR deactivated). The time relation
between base case and LBR is plotted in Fig. 2 for both
random traffic and hot-region traffic. We can see that
LBR is effective in reducing the time the network
requires to deliver one burst. As expected, the gains
increase with the number of packets sent per burst.
LBR is more effective in the 2D network, as adaptive
routing increases pressure on network resources and
causes higher contention than in the 64-ring
counterpart. Thus, the evaluation of LBR using a 64-
ring give us a conservative estimate of the gains
achieved by LBR on multidimensional network with
similar radix.

4.2 Experiments Using Application Traces

We now explore the relationship between b and the

problem size of the NPB. This suite can be compiled
and run for a variety of problem sizes, denoted S, W,
A, B, C and D—where S is the smallest and D is the
largest. Larger problems use larger data structures, and
this entails interchanges of larger messages, although
the pattern of interchanges remains the same. There is,
though, an exception to this rule: for LU, as the
problem size increases, the number of messages
interchanged also increases, in addition to its size.

For a second set of experiments, we have generated
traces for a variety of problem sizes for all the NPB,
and processed them through the network simulator. We
have used the official sizes defined for the applications,
and added some intermediate cases when necessary
(for example, the difference in problem size from S to
W for IS is too wide, so we have added those cases
denoted as “T”). Figures 3(a) and 3(b) show the results
obtained for IS and CG respectively. Compare with the
curves in Fig. 2 for the synthetic patterns UN and HR.
Again, as the problem grows, the benefits of LBR are
more visible. Although congestion control can be
counterproductive in some cases (CG), its penalty is
small.

4.3 Analysis of Application Traces

Results from previous sections predict that LBR is
clearly beneficial in some applications, but may have a
negative impact in others.

Uniform 64

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

10 100 1000 10000

Burst size

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

LBR

Log. (LBR)

Uniform 64x64

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

10 100 1000 10000

Burst size

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

LBR

Log. (LBR)

Hot Region 64

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

10 100 1000 10000

Burst size

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

LBR

Log. (LBR)

Hot Region 64x64

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

10 100 1000 10000

Burst size

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

LBR

Log. (LBR)

Fig. 2. Performance of 1D and 2D tori dealing with bursts of uniform and hot-region traffic.
Normalized times to consume a burst, and trend lines (X axis is logarithmic).

NPB - IS

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Problem size

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

LBR

Trend (log)
S

T
W

A

B

T2

T

1

(a)

NPB - CG

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.E+03 1.E+04 1.E+05

Problem size

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

LBR

Trend (log)

S

T

W A

B

(b)

NPB - LU

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Problem size

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

LBR

Trend (log)

W

A

B
C

D

(c)

Fig. 3. Relationship between problem size and efficiency of LBR for benchmarks IS (a), CG (b) and
LU (c). Measured values and trend lines. Scale in the X axis is logarithmic. Y axis represents the
time to consume the applied workload, relative to the base case without LBR.

We have related this to the problem size and to the
burst size b in our synthetic model, but we have also
observed that this approach is not valid for all cases. In
this section we analyze the traces of CG and LU (size
A, 64 processors), obtained in the Mare Nostrum, to
better understand the relationship between the traffic
patterns and the effect of congestion control.

CG is the only application of the NPB suite that
does not benefit from congestion control—just the
opposite. A visualization of the trace of CG.A.64 (see
Fig. 4) shows that this application consists of a series
of iterations, each of them with these phases:

(1) An interchange of messages: each node sends and
receives 7 messages. The first 4 are long (~14
KB) and the remaining 3 are very short (8 B). The
first two long messages go to nodes nearby, while
the remaining two must traverse longer distances.
The first short message goes to a distant node,
while the remaining two go to nearby nodes.

(2) A short computation phase.
(3) A second interchange of three very short

messages, between nearby nodes.
(4) A longer computation phase.

In short, this benchmark exhibits long
communication-synchronization chains: a message is
sent only when triggered by the reception of another
one. These chains are of length 7 in phase 1, and of
length 3 in phase 3. The number of messages
traversing the network simultaneously is never very
large, and in most cases they go to close destinations.
Any delay injecting a given message (for example, to
prioritize in-transit traffic, as LBR does) results in
additional delays injecting messages than depend on it.
We can expect to obtain maximum benefit from
congestion control in communication-intensive phases
with a mixture of short-distance and long-distance
packets, without interdependencies. CG does not fulfill
these requirements, so the observed performance drop.

LU is the application that benefits most from
congestion control. However, we expected more
improvements for larger problem sizes, and this does
not happen. The traces help us understanding the
reasons. A study of the trace of LU.A.64 shows that
this application also consists of a series of iterations,
each of which has 7 phases:

 (1) A cascade of short, chained messages (600 B)
initiated at node #0, flowing downward to the
remaining nodes; messages go to destinations at
distance 1 or 8.

(2) A similar, upward cascade, started at node #63.
(3) A computation phase.
(4) An interchange of a long message (~40 KB) with

a neighbor.
(5) A computation phase.

(6) Another interchange of a long message, with a
node at distance 8.

(7) A computation phase.

Fig. 5 illustrates the 7 phases for LU.A.16. The size
was reduced to 16 for the sake of clarity, but the
patterns are similar for LU.A.64. Phases 1 and 2 are
very demanding in terms of network utilization, and
they take a sizeable portion of the total running time. In
those phases there are dependency chains, of length 7,
among messages. All messages in each chain go to
distance 1 or 8. As LBR prioritizes the in-transit
traffic, messages to distance 1 are injected after those
going to distance 8 have passed trough, thus the total
time for these phases is increased greatly. It is
important to remark that when the problem size
increases, both the message size and the number of
chains in the cascades increase.

In phase 4 only neighbor-to-neighbor links are used,
so network routers do not observe passing-by traffic. In
this phase, dependency chains are of length 2. Phase 6
is similar to 4, having chains of length 2, but message
destinations are at distance 8. This results in conflicts
between in-transit traffic and injected traffic.

Congestion control techniques are very effective in
accelerating phase 6; in fact, a micro-benchmark that
reproduces only this phase reports gains using LBR
over a 40%. However, they are harmful in phases 1 and
2—a micro-benchmark for this phase reports drops of a
20%. When the problem size of LU is increased, phase
6 does not experiment further acceleration, but phases
1 and 2 are longer in number of messages and, thus, the
negative impact of congestion control is more
noticeable. This explains the results of Fig. 3c,
showing performance decreases for larger problem
sizes.

The conclusion of this section is that a simple,
burst-synchronized traffic model may not adequately
describe the characteristics of any possible application,
but can do so for some phases of the application. We
need to improve the model to include the dependency
chains that are present in actual applications and that
interact negatively with congestion control
mechanisms.

5 Conclusions

Synthetic workloads are useful during the initial
design stages of an IN, as they allow exploring the
network design space and providing initial
performance estimates. For large networks, the
synthetic model should take into account, at least, the
self- throttling that real applications have implicit.

1 23 4

Fig. 4. Visualization of a portion of the traces for CG.A.64 (a): a yellow block (state) in the timeline
represents a “send”, pink means “receive”, and cyan means “wait”. The remaining is
computation time. Arrows represent messages.

1 2 3 4 5 6 7

Fig. 5. Visualization of a portion of the LU.A.16 trace: in the last phase of data interchanges
messages are sent to distance 4, whilst in the LU.A.64 this distance is 8. (yellow block (state)
represents a “send”, pink means “receive”, and cyan means “wait”. The remaining is
computation time.

We propose the utilization of burst-synchronized
traffic that, although still simple, models application
behavior better than the traffic generated by
independent sources. Scientific applications advance in
alternating phases of computation and communication-
synchronization. In our model, a burst represents a
phase of intensive packet interchanges followed by
synchronization primitives such as a barrier. The burst
size b indicates the number of packets sent by each
node in each phase.

We have used this traffic to evaluate a local
congestion control mechanism (Local Buffer
Restriction), after showing that the utilization of
independent sources may provide misleading results.
Using burst-synchronized traffic, LRB shows its
potential to accelerate message interchange in a VCT
network. This benefit is larger for larger values of b. In
order to validate this result, we have performed
additional experiments using real traffic, taken from
traces of the NPB (class A, 64 nodes). For most of the
experiments, congestion control shows its good
performance, confirming our findings. Furthermore,
the class (problem size) of the NPB is directly related
to b and, again, larger problems benefit more from
congestion control.

There are some exceptions, though, to this rule. For
some applications, congestion control is
counterproductive and, for some others, obtained
results are not as good as we could expect, especially
for large problems. This is because the applications, or
some phases within them, have long chains of
dependencies between messages. This behavior is not
adequately characterized by burst-synchronized traffic,
which models all traffic interchanges inside a phase as
independent communication events.

In summary, this study has proven that the
utilization of burst-synchronized traffic is a reasonable,
although not perfect, alternative to the utilization of
actual traffic, and can help in the evaluation of large
networks for which the use of real traffic loads is not
viable. Future lines of work include the introduction in
this model of some sort of “reactiveness” to describe
message chains, and also a method to find the best
value of b that characterizes a given application.

References
[1] E. Baydal, P. Lopez and J. Duato, “A Family of
Mechanisms for Congestion Control in Wormhole
Networks” IEEE Trans. on Parallel and Distributed Systems,
V. 16, N. 9, Sept. 2005, pp 772-784.
[2] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa,
P. Heidelberger, S. Singh, B. Steinmacher-Burrow, T.
Takken, P. Vranas. “Design and Analysis of the BlueGene/L
Torus Interconnection Network” IBM Research Report
RC23025 Dec. 2003.

[3] T. Callahan and S.C. Goldstein, “NIFDY: A Low
Overhead, High Throughput Network Interface”, in Proc.
22nd Annual Int. Symp. on Computer Architecture (ISCA),
Italy, June 1995.
[4] W.J. Dally, B. Towles. “Principles and Practices of
Interconnection Networks”. Morgan-Kaufmann, 2004.
[5] J. Duato. “A Necessary and Sufficient Condition for
Deadlock-Free Routing in Cut-Through and Store-and-
Forward Networks”. IEEE Trans. on Parallel and Distributed
Systems, v. 7, n. 8, 1996.
[6] C. Izu, J. Miguel-Alonso, J.A. Gregorio. “Evaluation of
Interconnection Network Performance under Heavy Non-
uniform Loads”. Lecture Notes in Computer Science,
Volume 3719 / 2005 (Proc. ICA3PP 2005), pp. 396 - 405.
[7] C. Izu, J. Miguel-Alonso, J.A. Gregorio. “Effects of
Injection Pressure on Network Throughput”, in Proc. PDP
2006 14th Euromicro Conference on Parallel, Distributed and
Network based Processing. Montbéliard-Sochaux - France-
February 15-17 2006.
[8] R. Jain. “Congestion control in computer networks: issues
and trends”. IEEE Network, v.4 n.3, May 1990.
[9] J. Miguel-Alonso, C. Izu, J.A. Gregorio. “Improving the
Performance of Large Interconnection Networks using
Congestion-Control Mechanisms”. EHU-KAT-IK-06-05.
Dep. of Computer Architecture and Technology, UPV/EHU.
Submitted.
[10] NASA Advanced Supercomputing (NAS) division.
“NAS Parallel Benchmarks” Available (May 2006) at
http://www.nas.nasa.gov/Resources/Software/npb.html
[11] J. Navaridas, F.J. Ridruejo, J. Miguel-Alonso.
"Evaluation of Interconnection Networks Using Full-System
Simulators: Lessons Learned". Proc. 40th Annual Simulation
Symposium, Norfolk, VA, 2007.
[12] V. Puente, C. Izu, J.A. Gregorio, R. Beivide, and F.
Vallejo, “The Adaptive Bubble router”, Journal on Parallel
and Distributed Computing, vol 61, no. 9, Sept. 2001.
[13] F.J. Ridruejo, J. Miguel-Alonso. “INSEE: an
Interconnection Network Simulation and Evaluation
Environment”. Lecture Notes in Computer Science, Volume
3648 / 2005 (Proc. Euro-Par 2005).
[14] Y.H. Song, T.M. Pinkston. “Distributed Resolution of
Network Congestion and Potential Deadlock Using
Reservation-Based Scheduling”. IEEE Trans. Parallel and
Distributed Systems, v.16, N.8, 2005.
[15] M. Thottethodi, A.R. Lebeck, S.S. Mukherjee.
“Exploiting Global Knowledge to Achieve Self-Tuned
Congestion Control for K-Ary N-Cube Networks”. IEEE
Trans. on Parallel and Distributed Systems, Vol. 15, No. 3,
March 2004, pp 257-272.
[16] Virtutech Inc. “Simics page”. Available (June 2006) at

http://www.virtutech.se/products/

Acknowledgements

This research has been supported by the Spanish

Ministerio de Educación y Ciencia, under grant TIN2004-
07440-C02-01. Mr. Navaridas is supported by a pre-doctoral
grant from the University of the Basque Country. We also
acknowledge the Barcelona Supercomputing Center (BSC)
for supplying computing resources for our research.

